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Introduction 

The aim of the exercise is to study the Hall phenomenon, and in particular, 

determination of the Hall constant and the concentration of electrical current carriers. 

In 1879 E.H. Hall planned an experiment to determine the sign of current carriers 

moving within the semiconductor, as well as their concentration and mobility. Let's follow 

this reasoning. 

Let an electric current of density j (Fig. 2.1) flow through the semiconductor, which 

has the shape of a rectangular plate. In this case, the current density vector coincides with the 

direction of the electric field applied to the sample. If the semiconductor is homogeneous, 

then the equipotential plane passing through ac (Fig. 2.1), perpendicular to the direction of the 

electric field E, is also perpendicular to the vector of current density j. Therefore, the 

electrical potential difference between points a and c is equal to zero. We will now place the 

semiconductor in a homogeneous magnetic field (B) whose lines are perpendicular to the 

direction of current flow (see Fig. 2.1). 

The Lorentz force is acting on the electric charge Q, moving at the velocity v in the 

magnetic field B, in accordance with the formula: 

�⃗� = 𝑄(�⃗� × �⃗⃗�).              (2.1) 

 

 

Fig. 2.1 Hall voltage measurement system 

The direction of this force depends on the sign of the charge carriers Q and the vector 

product of the velocity v and magnetic field B. If the velocity of the charge carriers has 

a component perpendicular to the magnetic field B, then under the action of the Lorentz force 

there is a deflection of the charge carriers in the direction perpendicular to v and B. The result 

is a spatial separation of charge carriers and the electric field EH appears (Figure 2.2) 

 



 

Fig. 2.2 The deflection of the direction of movement of the current carriers under the 

influence of the magnetic field in the samples with hole (a) (on the left side) and electron 

conductivity (b) (on the right side of the figure). 

The consequence of the charge separation is the appearance of the difference in 

electrical potentials UH between the ac points (see Fig 2.1). This effect is called the Hall 

effect, and the appearing difference in electrical potentials UH  - Hall's voltage. 

Under the influence of Lorentz force, for the given direction of B and E, the holes in 

the acceptor semiconductor (Fig. 2.2a) and electrons in the donor semiconductor (Fig. 2.2b) 

decline towards the upper wall of the sample, and there is a deficit of them on the bottom 

wall. It results in the creation of opposite potential on the upper and lower wall respectively. 

This process continues as long as the Hall electric field generated by the separation of charge 

carriers does not create a force acting on free load carriers balancing the Lorentz force. In the 

state of equilibrium, these forces are equal in number and for the electron semiconductor they 

meet the equality: 

𝑒𝐸𝐻 = 𝑒𝑣𝐵.       (2.2) 

If the width of the sample is b, the thickness d, then the potential difference UH is: 

𝑈𝐻 = 𝐸𝐻𝑏 = −𝑣𝐵𝑏.       (2.3) 

The current I, the current density j and the speed of the carriers v meet the dependencies: 

   𝐼 = 𝑗𝑆,      𝑆 = 𝑏𝑑,       𝑗 = 𝑒𝑛𝑣            (2.4) 

When determining v from the above equations, the expression (2.3) can be written: 

𝑈𝐻 = −
1

𝑒𝑛
∙

1

𝑑
∙ 𝐼𝐵 = 𝑅 ∙

𝐵

𝑑
∙ 𝐼.           (2.5) 

The value of R in equation (2.5) is called the Hall constant and in the case of electrons it 

equals to: 

𝑅 = −
1

𝑒𝑛
.         (2.6) 

If the charge carriers are holes with a concentration p, then taking into account Fig. 2.2a, the 

equation (2.5) will take the form: 

𝑈𝐻 =
1

𝑒𝑝
∙

1

𝑑
∙ 𝐼𝐵 = 𝑅 ∙

𝐵

𝑑
∙ 𝐼.                      (2.7) 

And the Hall constant 



𝑅 =
1

𝑒𝑝
.               (2.6a) 

As can be seen from the equation (2.5), the measurement of Hall's voltage UH enables the 

calculation of Hall's constant  (2.5a) if the values of magnetic field B, current intensity I and 

sample thickness d are known.  

       𝑅 =
𝑑∙𝑈𝐻

𝐵∙𝐼
.                    (2.5a) 

It, in turn, gives the possibility to calculate the concentration of charge carriers n from 

dependence (2.6). 

The formula (2.5) can also be used to determine the magnetic field B. In modern information 

and multimedia technology, hallotrons (semiconductors used to measure the magnetic field B 

using the Hall effect) are widely used. 

The laboratory setup 

The measuring setup consists of a hall sensor (semiconductor plate) located in the gap 

between the magnets and a mechanical system equipped with a knob with an angular scale, 

ensuring the rotation of the magnets around the plate. The magnets produce a constant and 

homogeneous field of known value (B0 = 1 T). The rotation of the magnets make of changing 

the direction of the magnetic field vector B in relation to the main axis of the hallotron plate 

along which the current Ix flows (see fig. 2.1). The setup includes sockets for connecting the 

meters: voltmeter for UH measurements and ammeter for Ix measurements. The source of the 

current Ix is a stabilized power supply enabling smooth change of the current Ix. 

After turning on the power with the switch located in the rear part of the set housing, it 

is required to wait about 3-5 minutes. 

The setup is shown in the photo below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Photograph of the Hall effect setup. 



Proceeding 

1. Connect the meters for measuring the current Ix and the Hall voltage UH. Set the 

minimum value with the Ix current adjustment knob. In every meter, use the buttons 

located on the front panel, activating the appropriate work function (voltmeter or 

ammeter) and the corresponding measuring range (see fig. 2.3). 

2. After checking the connections by the teacher, turn on the meters and then power on 

the system. 

3. Use the knob located on the front panel of the system to set the angle α. At start set the 

value of  α = 0. For this angle the direction of the vector of magnetic field B and the 

direction of the Ix are at right angle.  

4. From Ix = 0 mA, gradually increase the current, with the step of 0.5 mA until the 5 mA 

is reached. Save the readings of the Ix and UH meters. Assume the Hall voltage (UH) as 

positive even if the meter shows negative. Do the same for currents. 

5. Change the angle of the magnets by 180
0
 (In this case, the direction of the magnetic 

field is opposite to the one set out in point 3). 

6. For the newly set value of the angle α, perform measurements according to point 4. 

7. Under the Results Table, save the information relevant for estimating the uncertainty 

of the measurements made. Write down the information about the constants of the 

system (located on the casing of the system; (currently: B0 = (1.000 ± 0.005) T, 

d = 12.90 ± 0.15) μm, Ix max = 5 mA)). 

8. After taking measurements, turn the Ix current knob to minimum. 

The Results Table 

α Ix U(Ix) UH U(UH) 

[
0
] [mA] [mA] [V] [V] 

 

    

    

    

    

    

    

    

    

    

    

 

    

    

    

    

    

    

    

    

    

    



Development of measurement results 

1. For each value of Ix, calculate the expanded uncertainty U(Ix). Take k = 2. Record the 

results in the table above.  

       𝑈(𝐼𝑥) = 𝑘 ∙ 𝑢(𝐼𝑥) = 𝑘 ∙ √(∆𝑒(𝐼𝑥))
2

+(𝐶1∙𝐼𝑥+𝐶2)2

3
.       (2.8) 

The values of C1 and C2 for the used meter (DM-441B) are respectively: C1 = 0.005, 

C2 = 1μA. If, when reading the current Ix, the value displayed on the meter changed 

slightly, then the maximum of such a change can be treated as the factor influencing 

on the investigator's uncertainty Δe(Ix). The assumption that Δe(Ix) = 0.010 mA will 

allow for displaying the visible uncertainty bars on the graph of the dependence of 

UH = f (Ix).  

2. Make estimation/calculation of the expanded (k = 2) standard uncertainty U(UH) 

according to the following formula: 

       𝑈(𝑈𝐻) = 𝑘 ∙ 𝑢(𝑈𝐻) = 𝑘 ∙ √(∆𝑒(𝑈𝐻))
2

+(𝐶1∙𝑈𝐻+𝐶2)2

3
.       (2.9) 

The constants for the used DM-441B are as follows: C1 = 0.001, C2 = 400 μV. As in 

the case of currents, the investigator’s uncertainty can also be assumed in the case of 

the measured voltage. If you have no other idea, take Δe(UH) = 5.0 mV. 

3. Make a graph of the Hall voltage UH versus the Ix current. Plot uncertainty bars on the 

chart. Draw a trend line, which should be a straight line that best fits the measurement 

points.  

 

4. Using the LINEST (Excel) function, determine the values of the parameters of the 

equation of a straight line (UH = a·Ix + b). In the table below write down the values of 

a and b, their uncertainties and their units. 

 



Slope of the line  

(UH = a·Ix + b) 

Intercept of the line  

(UH = a·Ix + b) 

a u(a) b u(b) 

[complete the unit] [complete the unit] [complete the unit] [complete the unit] 

    

 

5. Calculate the value of the Hall constant for the semiconductor hallotron used in the 

exercise: 

𝑅 =
𝑎∙𝑑

𝐵0
.     (2.10) 

6. Calculate the expanded (k = 2) standard uncertainty U(R) according to the following 

formula: 

𝑈(𝑅) = 𝑘 ∙ 𝑅 ∙ √(
𝑢(𝑎)

𝑎
)

2

+ (
𝑢(𝑑)

𝑑
)

2

+ (
𝑢(𝐵0)

𝐵0
)

2

.    (2.11) 

7. Calculate the concentration (n) of charge carriers in the tested semiconductor: 

𝑛 =
1

𝑒∙𝑅
.      (2.12) 

When the charge carriers are electrons, e can be understood as an elementary charge of 

1.602·10
-19

 C. 

8. Calculate the expanded (k = 2) standard uncertainty U(n) according to the following 

formula: 

𝑢(𝑛) = 𝑘 ∙ 𝑛 ∙
𝑢(𝑅)

𝑅
.    (2.13) 

9. Formulate conclusions for the exercise. 

 

 

 

 


