
Gravitational acceleration on the Earth’s surface 
 

Introduction 

The aim of the exercise is to determine the gravitational acceleration on the Earth’s 

surface using a mathematical pendulum and to examine the damped physical pendulum motion, 

for which the so-called logarithmic decrement of damping is determined. 

The body moves with acceleration (g) during a free fall at the Earth’s surface when the 

air resistance is negligible. Due to the non-spherical shape of the Earth and its rotary motion, the 

acceleration changes from the value 9.764 m/s
2
 at the equator, to the value of 9.863 m/s

2
 at the 

pole. For example, for 45º of latitude, the gravitational acceleration is 9,806 m/s
2
. Since the 

acceleration during free fall, according to the law of universal gravity, depends on the distance of 

the body from the center of the Earth, for the mentioned latitude, at the height of 16 km, it is 

9.757 m/s
2
. 

Determining the value of the gravitational acceleration directly from the measurements of 

free fall of the bodies does not give results with the desired accuracy. The most accurate 

measurement methods are based on observing the orbits of artificial satellites. The value of 

g can, however, be determined with satisfactory accuracy by means of a simple pendulum. 

A pendulum is a weight suspended from a pivot so that it can swing freely. When 

a pendulum is displaced sideways from its equilibrium position, a restoring force due to gravity 

will accelerate it back toward the equilibrium position. When released, the restoring force acting 

on the pendulum's mass causes it to swing back and forth. The simple gravity pendulum is an 

idealized mathematical model of a pendulum. This is a weight on the end of a massless cord 

suspended from a pivot, without friction. When given an initial push, it will swing back and forth 

at a constant amplitude. Real pendulums are subject to friction and air resistance, so the 

amplitude of their swings declines. 

The pendulum of length l shown in Fig. 1.1 is pivoted by an 

angle α. The gravitational force (Fg) and tension force (FT) act on the 

ball of mass m. The resultant of both these forces (F), determining the 

pendulum's motion, is the tangent component of the force of gravity. 

𝐹 = 𝐹𝑔𝑠𝑖𝑛(𝛼) = 𝑚𝑔𝑠𝑖𝑛(𝛼).   (1.1) 

In a right-angled triangle containing sides with lengths l and x 

𝑠𝑖𝑛(𝛼) =
𝑥

𝑙
.         (1.2)  

 Inserting 1.2 into 1.1 we have: 

𝐹 = 𝑚𝑔
𝑥

𝑙
.         (1.3) 

For small angles (α) the force F is approximately equal to its 

horizontal component (Fx) (not shown in Fig. 1.1), which is 

proportional to the displacement (x) of the pendulum from the 

equilibrium position, according to the formula: 

𝐹 ≅ 𝐹𝑥 = 𝑘𝑥,                 (1.4) 

 

Fig 1.1     Distribution of forces acting on a ball in a simple pendulum. 
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where k is force constant. Substituting 1.4 to 1.3 we get 

𝑘𝑥 = 𝑚𝑔
𝑥

𝑙
                             (1.5) 

and after deletion x  

𝑘 =
𝑚𝑔

𝑙
.                           (1.6) 

k can be expressed also as a function of free oscillation pulsation (ω),  

𝑘 = 𝑚𝜔2,                           (1.7) 

which in turn is dependent on the vibration period (T) as follows: 

𝜔 =
2𝜋

𝑇
.                           (1.8) 

Taking into account 1.8 and 1.7, the formula 1.6 can be expressed as follows: 

𝑚 (
2𝜋

𝑇
)

2

=
𝑚𝑔

𝑙
.                     (1.9) 

After simple transformations and deletion of m we get the formula for Earth’s acceleration: 

𝑔 = 4𝜋2 𝑙

𝑇2,                 (1.10) 

which can be determined knowing the length of the pendulum (l) and the period of vibration (T). 

Any swinging rigid body freely rotating about a fixed horizontal axis is called a physical 

pendulum. The appropriate equivalent length (L) for calculating the period of any such pendulum 

is the distance from the pivot to the center of oscillation. This point is located under the center of 

mass at a distance from the pivot traditionally called the radius of oscillation, which depends on 

the mass distribution of the pendulum. If most of the mass is concentrated in a relatively small 

size compared to the pendulum length, the center of oscillation is close to the center of mass. The 

radius of oscillation or equivalent length (L) of any physical pendulum can be shown to be 

𝐿 =
𝐼

𝑚𝑅
           (1.11) 

where I is the moment of inertia of the pendulum about the pivot point,  m is the mass of the 

pendulum, and R is the distance between the pivot point and the center of mass. Substituting this 

expression in 1.10, the period of a physical pendulum is given by 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝑅
.      1.12) 

If the movement of the pendulum takes place in a material medium, then due to the 

resistance of the medium, which we treat as a damping force, the vibrations will disappear. 

Regardless of the nature of the medium, the damping force FD, if the speed (v) is small, can be 

represented by the formula: 

𝐹𝐷 = −𝑏 ∙ 𝑣 = −𝑏
𝑑𝑥

𝑑𝑡
.           (1.13) 

The constant factor b is called the damping constant, and the minus sign in the above formula is 

a consequence of the fact that the force FD is always directed against the direction of motion. 

Taking into account the effect of force (1.13), we can write the equation of motion for damped 

oscillations, according to the second principle of dynamics: 
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𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑏
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0.           (1.13) 

It is a differential equation of damped vibrations, the solution of which is a function 

𝑥(𝑡) = 𝐴0𝑒−𝛽𝑡𝑠𝑖𝑛(𝜔1𝑡 + 𝜑),              (1.14) 

where 𝛽 =
𝑏

2𝑚
  – damping factor, 𝜔1 = √𝜔2 − 𝛽2 – pulsation of damped vibrations. From 

formula (1.14)  we see that due to the damping force  

– the amplitude of vibrations decreases with time according to the dependence 

𝐴(𝑡) = 𝐴0𝑒−𝛽𝑡,           (1.15) 

– vibration pulsation is less than for free vibrations 

𝜔1 = √𝜔2 − 𝛽2 ≤ 𝜔              (1.16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2    An example of the dependence of the point's displacement from the equilibrium 

position in the damped motion. The assumed values of the initial amplitude (A0), initial phase 

(φ), mass of the vibrating body (m), damping constant (b) and damping factor (β) are included in 

the figure. 

Another physical quantity characterizing damped vibrations is so-called “logarithmic 

damping decrement” (D). This is the natural logarithm of the ratio of any two successive 

amplitudes An and An+1 at times t and t+T.  

𝐷 = 𝑙𝑛
𝐴𝑛

𝐴𝑛+1
=

𝐴0𝑒−𝛽𝑡

𝐴0𝑒−𝛽(𝑡+𝑇) = 𝑙𝑛(𝑒𝛽𝑇) = 𝛽𝑇.     (1.17) 

Due to the ease of determination of D and T, the formula (1.17) can be used to calculate 

the damping factor 𝛽 =
𝐷

𝑇
  (1.18) and damping constant  𝑏 = 2𝛽𝑚 (1.19). 

 



Description of the laboratory set 

The pendulum set consists of four balls (two wooden and 

two metal) suspended on threads of various lengths. The whole 

was placed on a common tripod as illustrated in Fig. 1.3. 

      

The physical pendulum used in the exercise was made of 

a set of plates in a frame suspended on two long cords (about 4 

m), as shown in Figure 1.4. Single plates can be positioned 

transversely or longitudinally to the direction of movement. 

 

 

 

 

 

Fig 1.3    Simple pendulum set 

 

 

 

 

Fig. 1.4   Physical pendulum; 1- the set of plates 

suspended on two long cords, 2- the scale of 

the ruler. 
 

 

Proceeding  

Gravitational acceleration 

1. Determine the length of the pendulum by specifying the length of the thread lt and the radius 

of the ball. The length is the sum of these two quantities. When measuring the length of the 

thread, i.e. the distance between the ball and the point of suspension of the thread, use 

a cathetometer - the instrument for measuring vertical distances in cases where a scale 

cannot be placed very close to the points whose distance apart is desired. Determine the 

radius of the ball, by measuring the diameter of the ball with a caliper. It guarantees good 

accuracy. Of course, the radius is obtained by dividing the diameter by two. Repeat the 

measurements three times. 

2. Incline the ball on an angle not exceeding 5º and then let it go freely, thus introducing the 

pendulum into swaying. After a few full cycles of swings, start the stopwatch at the moment 

of maximum displacement from balance position and measure the time of 30 full swing 

cycles.  



3. Perform the measurements described in points 1 and 2 for each of the pendulum, and save 

the results in the table.  

 

Table of measurements and calculation results 

Type 

of ball 

Thread length 

lt  (m) 

Diameter of 

the ball 

d (m) 

Length of the 

pendulum 
lav=(lt+dav/2) (m) 

Duration of 

30 periods 
(s) 

Period  

T (s) 

Earth’s acceleration  

g = 4π2 lav/Tav
2 

(m/s2) 

Aluminium  0.400● 0.0248 0.4124 38.60 1.287 9.829 

Wooden 0.295 0.0292     

Brass 0.660 0.0247     

Steel 0.820 0.0398     

 The data are given for an example. Students should write the results of their own 

measurements. 

 The data marked in blue must be saved during classes, others may be completed later. 

Determination of logarithmic damping decrement. 

1. Determine with the teacher the geometry of the plates in the physical pendulum. 

2. Incline the physical pendulum from the balance position beyond the scale and release it 

freely. 

2. If the pendulum movement is free from transverse vibrations, read from the scale 10 

successive amplitudes starting with the first readable one. Read the amplitudes on one side 

in relation to the equilibrium position. 

3. Enter the results of measurements into the table 

Table of measurements  

n 1 2 3 4 5 6 7 8 9 10 

An (cm) 48.0 39.5 36.0 32.5 29,0 26.5 24.0 21.0 19.0 17.5 

 The data marked in blue are given for an example. 

4. Measure the time of full 10 swing cycles of the physical pendulum.  

5. The mass of the pendulum stored on the plate (m = 3,851 kg,  u(m) = 0,010 kg). 

Processing of the data 

Earth’s acceleration 

1. Using the formula (1.10) determine the value of g for all pendulums. 

2. Estimate the standard uncertainties u(T) and u(l) using type B of evaluation or take them as: 

0.20 s and 0.0020 m, respectively. 

3. Calculate the combined uncertainty uc(g) using following formula: 



𝑢𝑐(𝑔) = √[
𝜕𝑔

𝜕𝑙
∙ 𝑢(𝑙)]

2

+ [
𝜕𝑔

𝜕𝑇
∙ 𝑢(𝑇)]

2

= √[
4𝜋2

𝑇2 ∙ 𝑢(𝑙)]
2

+ [
−2𝑇∙4𝜋2𝑙

𝑇4 ∙ 𝑢(𝑇)]
2

,           (1.20) 

 

4. Set of final results of calculations with appropriate number of significant digits. 

5. Using the concept of expanded uncertainty, compare the received acceleration g with 

a reference value. What conclusions result from this analysis? 

Logarithmic damping decrement 

1. Using the relationship 1.17, 

𝐷 = 𝑙𝑛
𝐴𝑛

𝐴𝑛+1
,                         (1.21) 

calculate the values of the logarithmic damping decrement for each pair of successive 

amplitudes. Then calculate the average value of the decrement. 

2. Estimate the standard uncertainty u(�̅�) using type A of evaluation 

𝑢(�̅�) = √
∑ (�̅�−𝐷𝑖)2𝑛

𝑖=1

𝑛(𝑛−1)
.     (1.22) 

3. Determine the damping factor (β), damping constant (b) and their uncertainties on the base 

of the following formulas: 

𝛽 =
�̅�

𝑇
,    

 𝑢(𝛽) = √(
𝑢(�̅�)

𝑇
)

2

+ (
−�̅�∙𝑢(𝑇)

𝑇2
)

2

,       (1.23) 

 

𝑏 = 2𝛽𝑚,     

𝑢(𝑏) = √(2𝑚 ∙ 𝑢(𝛽))
2

+ (2𝛽 ∙ 𝑢(𝑚))
2
.   (1.24) 

Supplementary literature 

1. Andrzej Kubiaczyk, Evaluation of Uncertainty in Measurements, Warsaw University of 

Technology, http://www.if.pw.edu.pl … . 
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